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Introduction to Bayesian Inference 

a Bayesian inference relies exclusively on Bayes Theorem: 

p(0ldata) ex p(0)p(datal0) 

a 0 is a usually a parameter (but could also be a data point, a model, a 
hypothesis) 

a pare probability densities (or probability mass functions in the case 
of discrete 0 and/or discrete data) 

a p(0)a prior density; p(datal0) the likelihood or conditional density 
of the data given 0 

a p(0ldata) is the posterior density for 0 given the data. 
a Gives rise to the Bayesian mantra: 

a posterior density is proportional to the prior times the likelihood 
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Probability Densities as Representations of Beliefs 

Definition (Probability Density Function (informal)) 

Let 0 be a unknown quantity, 0 E 0 s;;; IR. A function p(0) is a proper 
probability density function if 

0 p(0) 2 0\1 0. 
8 J p(0)d0 = 1.
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Probability Mass Function 

Definition (Probability Mass Function) 
If 0 is a discrete random variable, taking values in a countable space 
0 c JR, then a function p: 0 M [O, 1] is a probability mass function if 
0 p(0) = 0 \I 0 E JR \ 0 

8 LeEeP(0) = 1 
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Introduction to Bayesian Inference 

p(0ldata) ex p(0)p(datal0) 

a Bayesian inference involves computing, summarizing and 
communicating summaries of the posterior density p(Bldata). 

a How to do this is what this class is about. 
a Depending on the problem, doing all this is easy or hard; we solve 

"hard" with computing power. 
a We're working with densities (or sometimes, mass functions). 
a Bayesian point estimates are a single number summary of a posterior 

density 
a Uncertainty assessed/communicated in various ways: e.g., the 

standard deviation of the posterior, width of interval spanning 2.5th 
to 97.5th percentiles of the posterior, etc. 

a Sometimes, can just draw a picture; details, examples coming. 
□ � - = � ��� 
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Introduction to Bayesian Inference 

p(0ldata) ex p(0)p(datal0) 

a Bayes Theorem tells us how to update beliefs about 0 in light of 
evidence ("data") 

a a general method for induction or for "learning from data": 

prior--+ data --+ posterior 

a Bayes Theorem is itself uncontroversial: follows from widely 
accepted axioms of probability theory (e.g., Kolmogorov) and the 
definition of conditional probability 

□ ◄ cl' - ")Q.(" 
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Why Be Bayesian? 

a conceptual simplicity: "say what you mean" and "mean what you 
say" (subjective probability) 

a a foundation for inference that does not rest on the thought 
experiment of repeated sampling 

a uniformity of application: no special tweeks for this or that data 
analysis. Apply Bayes Rule. 

a modern computing makes Bayesian inference easy and nearly 
universally applicable 

□ ◄cl' = � ")Q.(" 
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Conceptual Simplicity 

p(0ldata) <X p(0) p(datal0) 

a the posterior density (or mass function) p(0ldata) is a complete 
characterization of beliefs after looking at data 

a as such it contains everything we need for making inferences 
a Examples: 

e the posterior probability that a regression coefficient is positive, 

negative or lies in a particular interval; 

e the posterior probability that a subject belongs to a particular latent 

class; 
e the posterior probability that a hypothesis is true; or, 

e the posterior probabilities that a particular statistical model is true 

model among a family of statistical models. 

□ ◄cl' = � ")Q.(" 
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Contrast Frequentist Inference 

a Model for data: y ~ f(0). 

a Estimate 0: e.g., least squares, MLE, etc, to yield 0 = 0(y) 

a null hypothesis e.g., Ho : 0Ho = O 
a Inference via the sampling distribution of 0 conditional on H0: e.g., 

assuming Ho, over repeated applications of the sam­
pling process, how frequently would we observe a result 
at least as extreme as the one we obtained? 

a "At least as extreme"? Assessed via a test statistic, e.g., 

t(y) = (0H - 0)/ Jvar(0l0 = 0H
0 )0 

a "how frequently"? The p-value, relative frequency with which we see 
ltl > t(y) in repeated applications of the sampling process. Often 
t(y)---+ N(O, 1). 

= □ · ◄ cl' - � ")Q.(" 
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Contrast Frequentist Inference 

a null hypothesis e.g., Ho: eHo = O 
a test-statistic: 

t(y) = (0H0 - 0)/ Jvar(0l0 = 0H0 ) 

da Often t(y) ➔ N(O, 1). 
a p-value is a statement about the plausibility of the statistic e relative 

to what we might have observed in random sampling assuming 
Ho: 0H0 = 0 

a one more step need to reject/fail-to-reject H0 • Is p sufficiently small? 
a frequentist p-value is a summary of the distribution of e under Ho 

□ ◄cl' = � ")Q.(" 
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Contrast Frequentist Inference 

a n.b., frequentist inference treats e as a random variable 
a e is a fixed but unknown feature of the population from which data is 

being (randomly) sampled 
a Bayesian inference: e is fixed, a function of the data available for 

analysis 
a Bayesian inference: e is a random variable, subject to (subjective) 

uncertainty 

e 
Bayesian
random 

Frequentist
fixed but unknown 

e fixed random 
"random-ness" 

distribution of interest 
subjective
posterior

p(ely) 

sampling
sampling distribution 

p(0(y)l0 = eHo ) 
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Subjective Uncertainty 

a how do we do statistical inference in situations where repeated 
sampling is infeasible? 

a inference when we have the entire population and hence no 
uncertainty due to sampling: e.g., parts of comparative political 
economy. 

a Bayesians rely on a notion of subjective uncertainty 
a e.g., 0 is a random variable because we don't know its value 
a Bayes Theorem tells us how to manage that uncertainty, how to 

update beliefs about 0 in light of data 
a Contrast objectivist notion of probability: probability as a property of 

the object under study (e.g., coins, decks of cards, roulette wheels, 
people, groups, societies). 

□ ◄cl' = � ")Q.(" 
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Subjective Uncertainty 

Many Bayesians regard objectivist probability as metaphysical nonsense. 
de Finetti: 

PROBABILITY DOES NOT EXIST 

The abandonment of superstitious beliefs about... Fairies and 
Witches was an essential step along the road to scientific 
thinking. Probability, too, if regarded as something endowed 
with some kind of objective existence, is not less a misleading 
misconception, an illusory attempt to exteriorize or materialize 
our true probabilistic beliefs. In investigating the 
reasonableness of our own modes of thought and behaviour 
under uncertainty, all we require, and all that we are reasonably 
entitled to, is consistency among these beliefs, and their 
reasonable relation to any kind of relevant objective data 
("relevant" in as much as subjectively deemed to be so). This is 
Probability Theory. 
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Subjective Uncertainty 

a Bayesian probability statements are thus about states of mind over 
states of the world, and not about states of the world per se. 

a Borel: one can guess the outcome of a coin toss while the coin is still 
in the air and its movement is perfectly determined, or even after the 
coin has landed but before one reviews the result. 

a i.e., subjective uncertainty obtains irrespective of "objective 
uncertainty (however conceived)" 

a not just any subjective uncertainty: beliefs must conform to the rules 
of probability: e.g., p(0) should be proper: i.e., fe p(0)d0 = 1, 
p(0) 2 0\/0 E 0. 

□ ◄cl' = � ")Q.(" 
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Bayes Theorem 

a Conditional probability: Let A and 8 be events with P( 8) > 0. Then 
the conditional probability of A given 8 is 

P(A n 8) P(A, 8) 
P(Al8) = = . 

P(8) P(8) 

a Multiplication rule: 

P(A n 8) = P(A. 8) = P(Al8)P(8) = P(8IA)P(A) 

a Law ofTotal Probability: 

P(8) = P(An 8) + P(~An 8) = P(8IA)P(A) + P(81 ~ A)P(~ A) 

a Bayes Theorem: If A and 8 are events with P(8) > 0, then 

P(8IA)P(A) 
p(Al8) = 

P(8) 
□ ◄ cl' - ")Q.('-
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Bayes Theorem, Example case, drug-testing 

a Prior work suggests that about 3% of the subject pool (elite athletes) 
uses a particular prohibited drug. 

a Hu: test subject uses the prohibited substance. 
a p(Hu) = .03. 
a E (evidence) is a positive test result. 
a Test has a false negative rate of .05; i.e., 

P(~ EIHu) = .05 ⇒ P(EIHu) = .95. 
a Test has a false positive rate of . 10: i.e., P(EIH~u) = .10. 
a Bayes Theorem: 

P(Hu)P(EIHu)P(HulE) = 
LiE{U,~U} P(H;)P(EIH;) 

.03x.95 
(.03x.95) + (.97x.10) 

.0285 
.0285 + .097 
.23 □ ◄cl' = � ")Q.('-
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Bayes Theorem, Continuous Parameter 

a Bayes Theorem: 
p(yl0)p(e)

p(Bly) = f p(yl0)p(0)d0 

a Proof: by the definition of conditional probability 

p(e. y) = p(Bly)p(y) = p(yle)p(e). (1) 

where all these densities are assumed to exist and have the 
properties p(z) > O and J p(z)dz = 1 (i.e., are proper probability 
densities. 
The result follows by re-arranging the quantities in equation 
equation 1 and noting that p(y) = J p(y, 0)d0 = J p(yl0)p(0)d0. 

□ ◄ cl' - ")Q.(" 
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Prior and Posterior Densities, Continuous Parameter 

0.0 0.2 0.4 0.6 0.8 1.0 

0.0 0.2 0.4 0.6 0.8 1.0 

Prior 

Posterior 

0.0 0.2 0.4 0.6 0.8 1.0 

Prior 

0.0 0.2 0.4 0.6 0.8 
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Prior, Likelihood and Posteriors: less standard cases 

Prior Prior Prior 

Likelihood Likelihood Likelihood 

Posterior Posterior Posterior 

Li!lWl_ 
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Cromwell's Rule: the dangers of dogmatism 

p(0ldata) <X p(0)p(datal0) 

a p(0ldata) = 0\1 0s.t.p(0) = 0. 
a Cromwell's Rule: After the English deposed, tried and executed 

Charles I in 1 649, the Scots invited Charles' son, Charles I I, to 
become king. The English regarded this as a hostile act, and Oliver 
Cromwell led an army north. Prior to the outbreak of hostilities, 
Cromwell wrote to the synod of the Church of Scotland, " I  beseech 
you, in the bowels of Christ, consider it possible that you are 
mistaken". 

a a dogmatic prior that assigns zero probability to a hypothesis can 
never be revised 

a likewise, a hypothesis with prior weight of 1 .0  can never be refuted. 

□ • cl' - ")Q.(" 
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Cromwell's Rule 

Prior Prior Prior 

Likelihood Likelihood Likelihood 

Posterior Posterior Posterior 
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Bayes ian Po i n t  Estimates 

� Bayes estimates: single number summary of a posterior density 
� but which one?: e.g., mode, median, mean, some quantile(s)? 
� different loss functions rationalize different point estimate 
� Loss: Let 0 be a set of possible states of nature 0, and let a E A be 

actions availble to the researcher. Then define 1(0, a) as the loss to 
the researcher from taking action a when the state of nature is 0. 

� Posterior expected loss: Given a posterior distribution for 0, p(0ly), 
the posterior expected loss of an action a is 
v(p(0ly), a) = f 1(0, a)p(0ly)d0. e 

□ ◄ cl' - ")Q.(" 
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Posterior Mean as Bayes Estimator Under Quadratic Loss 

a quadratic loss: If 0 E 0 is a parameter of interest, and 0 is an 
estimate of 0, then 1(0, 0) = (0 - 0) 2 is the quadratic loss arising from 
the use of the estimate 0 instead of 0. 

a Posterior Mean as Bayes Estimate Under Quadratic Loss: 

f(0ly) = 0 = f
0 0 p(0ly)d0. 

a Proof: Quadratic loss implies that the posterior expected loss is 

v(0,  0) = 1(0 - 0)2 p(0ly)d0. 

Expanding the quadratic yields 
~ ~ ~2 

v(0, 0) = f 02p(0ly)d0 + 0 - 20E(0ly). Differentiate with respect to e

0 , noting that the first term does not involve 0 .  Solve the 1st order 
condition for 0 and the result follows. 

□ ◄ cl' - ")Q.(" 
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Bayes Estimates 

a Quadratic Loss: mean of the posterior density, 

E(0ly) = le 0 p(0ly)d0 

a Symmetric Linear Loss: median of the posterior density, n.b., only 
well-defined for 0 E 0 s;;; IR, in which case 0 is defined such that 

- 5L 
a All-or-nothing Loss: mode of the posterior density 

0 = argmax p(Bly)
0E0 

□ ◄cl' = � ")Q.('-
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Credible Region; H PD region 

Definition (Credible Region) 

A region C � Q such that 1 p(0)d0 = 1 - ex, O s  ex s 1 is a 100(1 - ex)% 

credible region for 0. 
For single-parameter problems (i.e., Q � IR), if C is not a set of disjoint 
intervals, then C is a credible interval. 
If p(0) is a (prior/posterior) density, then C is a (prior/posterior) credible 
region. 

Definition (Highest Probability Density Region) 

A region C � Q is a 100(1 - ex)% highest probability density region for 0 
under p(0) if 

0 P( 0 E C) = 1 - ex 
8 P(01 ) 2:: P(02),  V 01 E C, 02 >t- C 
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H PD intervals 

a A 1 00(1 - ex)% H PD region for a symmetric, unimodal density is 
unique and symmetric around the mode; e.g., a normal density. 

a Cf skewed distributions; a H PD differs from simply reading off the 
quantiles. 

N(0, 1 )  x 2 
4 df 

-2 -1 0 2 

25% 75% 

0 2 4 6 8 1 0  

SIMON JACKMAN (Stanford) BAYESIAN ANALYSIS FOR THE SOCIAL SCIENCES November 9, 2012 27 / 32 



H PD intervals 

a HPDs can be a series of disjoint intervals, e.g., a bimodal density 
a these are uncommon; but in such a circumstance, presenting a 

picture of the density might be the reasonable thing to do. 
a See Example 1.7, p28: Y; ~ N(O, I:), subject to extreme missingness. 

The posterior density of p(I:) = 01 2 /  ✓o1 1 o22 :  

- 1  .0 -0.5 0 .0 0 .5 1 .0 

. I 
□ ◄ cl' - = :a, -') Q. ("  
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Bayes ian Cons isten cy 

a for anything other than a dogmatic/degenerate prior (see the earlier 
discussion of Cromwell's Rule), more and more data will overwhelm 
the prior. 

a Bayesian asymptotics: with an arbitrarily large amount of sample 
information relative to prior information, the posterior density tends 
to the likelihood (normalized to be a density over 0) . 

a central limit arguments: since likelihoods are usually approximately 
normal in large samples, then so too are posterior densities. 

□ ◄cl' = � ")Q.(" 
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Bayes ian Cons isten cy 

The prior remains fixed across the sequence, as sample size increases 
and e* is held constant. In this example, n = 6 , 30, 90 , 450 across the 
four columns. 

Prior Prior Prior Prior 

uuuu 
Likelihood likelihood Likelihood Likelihood 

ilJLl_J_ 
Posterior Posterior Posterior Posterior 

fJl_M_JiJ_ 
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Bayes ian Cons isten cy 

The prior remains fixed across the sequence, as sample size increases 
and e* is held constant. In this example, n = 6 , 30, 150, 1500 across the 
four columns. 

Prior Prior Prior Prior 

WM WM WM WM 
Likelihood likelihood Likelihood Likelihood 

ll_fLLL 
Posterior Posterior Posterior Posterior 

LLLL 
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Other topics from Chapter One 

a §1.8 .  Bayes ian  hypothesis testi n g. 

a §1.9. Exchangeabi l ity. de Fi nett i 's  Representation Theorem. 
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	a


	s
	s
	t Frequentist Inference 


	a null hypothesis e.g., Ho: eHo = O a test-statistic: t(y) = (0H-0)/ Jv
	0 
	ar(0l0 = 0H
	0 
	) 

	d
	a Often t(y) ➔ N(O, 1). a p-value is a statement about the plausibility of the statistic e relative to what we might have observed in random sampling assuming 
	= 0 a one more step need to reject/fail-to-reject H• Is p sufficiently small? a frequentist p-value is a summary of the distribution of e under Ho 
	Ho: 0H
	0 
	0 

	C
	C
	n
	o
	tr
	a


	s
	s
	t Frequentist Inference 


	a n.b., frequentist inference treats e as a random variable 
	a e is a fixed but unknown feature of the population from which data is being (randomly) sampled 
	a Bayesian inference: e is fixed, a function of the data available for analysis 
	a Bayesian inference: e is a random variable, subject to (subjective) 
	uncertainty 
	uncertainty 
	uncertainty 

	e 
	e 
	Bayesianrandom 
	Frequentistfixed but unknown 

	e 
	e 
	fixed 
	random 

	"random-ness" distribution of interest 
	"random-ness" distribution of interest 
	subjectiveposteriorp(ely) 
	samplingsampling distribution p(0(y)l0 = eHo ) 
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	a how do we do statistical inference in situations where repeated sampling is infeasible? 
	a inference when we have the entire population and hence no uncertainty due to sampling: e.g., parts of comparative political economy. 
	a Bayesians rely on a notion of subjective uncertainty 
	a e.g., 0 is a random variable because we don't know its value 
	a Bayes Theorem tells us how to manage that uncertainty, how to update beliefs about 0 in light of data 
	a Contrast objectivist notion of probability: probability as a property of the object under study (e.g., coins, decks of cards, roulette wheels, people, groups, societies). 
	Subjective Uncertainty 
	Many Bayesians regard objectivist probability as metaphysical nonsense. de Finetti: 
	PROBABILITY DOES NOT EXIST 
	The abandonment of superstitious beliefs about...Fairies and Witches was an essential step along the road to scientific thinking. Probability, too, if regarded as something endowed with some kind of objective existence, is not less a misleading misconception, an illusory attempt to exteriorize or materialize our true probabilistic beliefs. In investigating the reasonableness of our own modes of thought and behaviour under uncertainty, all we require, and all that we are reasonably entitled to, is consistenc
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	a Bayesian probability statements are thus about states of mind over states of the world, and not about states of the world per se. 
	a Borel: one can guess the outcome of a coin toss while the coin is still in the air and its movement is perfectly determined, or even after the coin has landed but before one reviews the result. 
	a i.e., subjective uncertainty obtains irrespective of "objective uncertainty (however conceived)" 
	a not just any subjective uncertainty: beliefs must conform to the rules of probability: e.g., p(0) should be proper: i.e., fe p(0)d0 = 1, p(0) 2 0\/0 E 0. 
	B
	B
	y
	a
	e
	s Theorem 



	a Conditional probability: Let A and 8 be events with P( 8) > 0. Then the conditional probability of A given 8 is 
	P(A n 8) P(A, 8) 
	P(Al8) = = . 
	P(8) P(8) 
	a Multiplication rule: 
	P(A n 8) = P(A. 8) = P(Al8)P(8) = P(8IA)P(A) 
	a Law ofTotal Probability: P(8) = P(An 8) + P(~An 8) = P(8IA)P(A) + P(81 ~ A)P(~ A) a Bayes Theorem: If A and 8 are events with P(8) > 0, then P(8IA)P(A) 
	p(Al8) = 
	P(8) 
	□ ◄ cl' -")Q.('-
	mple case, drug-testing 
	B
	y
	a
	e
	s Theorem, 


	E
	E
	xa


	a Prior work suggests that about 3% of the subject pool (elite athletes) 
	uses a particular prohibited drug. a Hu: test subject uses the prohibited substance. a p(Hu) = .03. a E (evidence) is a positive test result. a Test has a false negative rate of .05; i.e., 
	P(~ EIHu) = .05 ⇒ P(EIHu) = .95. a Test has a false positive rate of .10: i.e., P(EIH~u) = .10. a Bayes Theorem: 
	P(Hu)P(EIHu)
	P(Hu)P(EIHu)
	P(HulE) = 

	LiE{U,~U} P(H;)P(EIH;) .03x.95 
	(.03x.95) + (.97x.10) 

	.0285 .0285 + .097 
	.23 
	□ ◄cl' = � ")Q.('-
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	s Theorem, 


	C
	C
	ontinuous Parameter 


	a Bayes Theorem: p(yl0)p()
	e

	p(Bly) = 
	p(Bly) = 
	f p(yl0)p(0)d0 

	a Proof: by the definition of conditional probability 
	p(e. y) = p(Bly)p(y) = p(yle)p(e). (1) 
	where all these densities are assumed to exist and have the properties p(z) > O and J p(z)dz = 1 (i.e., are proper probability densities. 
	The result follows by re-arranging the quantities in equation equation 1 and noting that p(y) = J p(y, 0)d0 = J p(yl0)p(0)d0. 
	Prior and Posterior Densities, Continuous Parameter 
	Figure
	Figure
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	Figure
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	Posterior 
	Figure
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	Prior, Likelihood and Posteriors: less standard cases 
	Prior Prior Prior 
	Figure
	Likelihood Likelihood Likelihood 
	Figure
	Posterior Posterior Posterior 

	Li!lWl_ 
	Li!lWl_ 
	SIMON JACKMAN (Stanford) November 9, 2012 20 / 32 
	BAYESIAN ANALYSIS FOR THE SOCIAL SCIENCES 

	'
	r
	C
	o
	m
	w



	e
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	s Rule
	s Rule
	: 

	t
	he dangers of dogmatism 


	<X p(0)p(datal0) 
	p(0ldata) 

	a p(0ldata) = 0\1 0s.t.p(0) = 0. 
	a Cromwell's Rule: After the English deposed, tried and executed Charles I in 1649, the Scots invited Charles' son, Charles II, to become king. The English regarded this as a hostile act, and Oliver Cromwell led an army north. Prior to the outbreak of hostilities, Cromwell wrote to the synod of the Church of Scotland, "I beseech you, in the bowels of Christ, consider it possible that you are mistaken". 
	a a dogmatic prior that assigns zero probability to a hypothesis can never be revised 
	a likewise, a hypothesis with prior weight of 1.0 can never be refuted. 
	□ • cl' -")Q.(" 
	Cromwell's Rule 
	Prior Prior Prior 
	Likelihood Likelihood Likelihood 
	Figure
	Posterior Posterior Posterior 
	Figure
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	Ł 
	Ł 
	Ł 
	Bayes estimates: single number summary of a posterior density 

	Ł 
	Ł 
	but which one?: e.g., mode, median, mean, some quantile(s)? 

	Ł 
	Ł 
	different loss functions rationalize different point estimate 

	Ł 
	Ł 
	Loss: Let 0 be a set of possible states of nature 0, and let a E A be actions availble to the researcher. Then define 1(0, a) as the loss to the researcher from taking action a when the state of nature is 0. 

	Ł 
	Ł 
	Posterior expected loss: Given a posterior distribution for 0, p(0ly), the posterior expected loss of an action a is v(p(0ly), a) = f 1(0, a)p(0ly)d0. 


	e 
	ayes Estimator Under Quadratic Loss 
	o
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	ste
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	r
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	B

	a quadratic loss: If 0 E 0 is a parameter of interest, and 0 is an estimate of 0, then 1(0, ) = (0-0)is the quadratic loss arising from the use of the estimate 0 instead of 0. 
	0
	2 

	a Posterior Mean as Bayes Estimate Under Quadratic Loss: 
	f(0ly) = = f0 p(0ly)d0. 
	0 
	0 

	a Proof: Quadratic loss implies that the posterior expected loss is 
	v(0, ) = 1(0-)p(0ly)d0. 
	0
	0
	2 

	Expanding the quadratic yields 
	~ ~~
	2 
	v(0, 0) = f0p(0ly)d0 + 0 -20E(0ly). Differentiate with respect to 
	2

	e
	noting that the first term does not involve 0. Solve the 1st order 
	0,

	condition for 0 and the result follows. 
	□ ◄ cl' -")Q.(" 
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	a Quadratic Loss: mean of the posterior density, E(0ly) = le0 p(0ly)d0 a Symmetric Linear Loss: median of the posterior density, n.b., only well-defined for 0 E 0 s;;; IR, in which case 0 is defined such that 
	5
	-

	L 
	a All-or-nothing Loss: mode of the posterior density 0 = argmax p(Bly)
	0E0 
	Credible Region; HPD region 
	Definition (Credible Region) 
	A region C Ł Q such that 1p(0)d0 = 1-ex, Os ex s 1 is a 100(1-ex)% 
	credible region for 0. For single-parameter problems (i.e., Q Ł IR), if C is not a set of disjoint intervals, then C is a credible interval. If p(0) is a (prior/posterior) density, then C is a (prior/posterior) credible region. 
	Definition (Highest Probability Density Region) 
	A region C Ł Q is a 100(1 -ex)% highest probability density region for 0 under p(0) if 0 P( 0 E C) = 1 -ex 8 P(01) 2:: P(02), V 01 EC, 02 >t-C 
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	HPD intervals 
	a A 100(1 -ex)% HPD region for a symmetric, unimodal density is unique and symmetric around the mode; e.g., a normal density. a Cf skewed distributions; a HPD differs from simply reading off the quantiles. 
	N(0,1) x 4df 
	2 

	Figure
	-2 -1 0 2 
	-2 -1 0 2 


	25% 75% 
	Figure
	0 2 4 6 8 10 
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	a HPDs can be a series of disjoint intervals, e.g., a bimodal density 
	a these are uncommon; but in such a circumstance, presenting a picture of the density might be the reasonable thing to do. 
	a See Example 1.7, p28: Y; ~ N(O, I:), subject to extreme missingness. The posterior density of p(I:) = 01 2/ ✓o1 1o22: 
	Figure
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	a for anything other than a dogmatic/degenerate prior (see the earlier discussion of Cromwell's Rule), more and more data will overwhelm the prior. 
	a Bayesian asymptotics: with an arbitrarily large amount of sample information relative to prior information, the posterior density tends to the likelihood (normalized to be a density over 0). 
	a central limit arguments: since likelihoods are usually approximately normal in large samples, then so too are posterior densities. 
	Bayesian Consistency 
	The prior remains fixed across the sequence, as sample size increases and e* is held constant. In this example, n = 6, 30, 90, 450 across the four columns. 
	Prior Prior Prior Prior 
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	Likelihood likelihood Likelihood Likelihood 
	ilJLl_J_ 
	ilJLl_J_ 
	Posterior Posterior Posterior Posterior 
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	Bayesian Consistency 
	The prior remains fixed across the sequence, as sample size increases and e* is held constant. In this example, n = 6, 30, 150, 1500 across the four columns. 
	Prior Prior Prior Prior 
	WM WM WM WM 
	WM WM WM WM 
	WM WM WM WM 

	Likelihood likelihood Likelihood Likelihood 
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	Posterior Posterior Posterior Posterior 
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	Other topics from Chapter One 
	a §1.8. Bayesian hypothesis testing. a §1.9. Exchangeability. de Finetti's Representation Theorem. 
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