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How IBM built Watson, its "Jeopardy"-playing 

supercomputer by Dawn Kawamoto DailyFinance 02/08/2011 

Learning from its 

mistakes According to 

David Ferrucci (PI of Wat­

son DeepQA technology for 

IBM Research), Watson's 

software is wired for more 

than handling natural Ian-

guage processing. 

"Machine learning allows the computer to become smarter as it 

tries to answer questions - and to learn as it gets them right or 

wrong." 



-"'IT CLE TOOLS 
SPONSORED BY 

Adam 
NOW l'J.AYilNC. 

LN SI.I JJ-:CTT!ll·:AT~;M!! 

3 Data Mining Trevor Hastie, Stanford University 

For Today's Graduate, Just One Word: Statistics 
By STEVE LOHR 

Published: August 5, 2009 

MOUNTAIN VIEW, Calif. - At Harvard, Carrie Grimes majored in 

anthropology and archaeology and ventured to places like Honduras, 

where she studied Mayan settlement patterns by mapping where 

artifacts were found. But she was drawn to what she calls "all the 

computer and math stuff' that was part of the job. 

Enlarge This Image "People think of field archaeology as 

Indiana Jones, but much of what you 

really do is data analysis," she said. 

Now Ms. Grimes does a different kind 

of digging. She works at Google, 

where she uses statistical analysis of mounds of data to 

come up with ways to improve its search engine. 

Ms. Grimes is an Internet-age statistician, one of many 

who are changing the image of the profession as a place for 

dronish number nerds. They are finding themselves 

increasingly in demand - and even cool. 

"I keep saying that the sexy job in the next 10 years will be 

statisticians," said Hal Varian, chief economist at Google. 

"And I'm not kidding." 

Thor Swift for The New York Times 

Carrie Grimes, senior staff engineer at 
Google, uses statistical analysis of 
data to help improve the company's 
search engine. 
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NEW YORK TIMES, 

AUGUST 5, 2009 
"I keep saying that the sexy 
job in the next 10 years will 
be statisticians (sic). And 
I'm not kidding." - HAL 
VARIAN, chief economist 
at Google. 
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I Datamining for Prediction I 

• We have a collection of data pertaining to our business, 
industry, production process, monitoring device, etc. 

• Often the goals of data-mining are vague, such as "look for 

patterns in the data" - not too helpful. 

• In many cases a "response" or "outcome" can be identified as a 
good and useful target for prediction. 

• Accurate prediction of this target can help the company make 
better decisions, and save a lot of money. 

• Data-mining is particularly good at building such prediction 
models - an area known as "supervised learning". 
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I Example: Credit Risk Assessment I 

• Customers apply to a bank for a loan or credit card. 

• They supply the bank with information such as age, income, 
employment history, education, bank accounts, existing debts, 
etc. 

• The bank does further background checks to establish credit 
history of customer. 

• Based on this information, the bank must decide whether to 
make the loan or issue the credit card. 
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Example continued: Credit Risk Assessment 
J 

• The bank has a large database of existing and past customers. 
Some of these defaulted on loans, others frequently made late 
payments etc. An outcome variable "Status" is defined, taking 
value "good" or "default". Each of the past customers is scored 
with a value for status. 

• Background information is available for all the past customers. 

• Using supervised learning techniques, we can build a risk 
prediction model that takes as input the background 
information, and outputs a risk estimate (probability of 
def a ult) for a prospective customer. 

The California based company Fair-Isaac uses a generalized 
additive model + boosting methods in the construction of their 
credit risk scores. 
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I Example: Churn Prediction I 

• When a customer switches to another provider, we call this 
uchurn". Examples are cell-phone service and credit card 
providers. 

• Based on customer information and usage patterns, we can 
predict 

- the probability of churn 

- the retention probability ( as a function of time) 

• This information can be used to evaluate 

- prospective customers to decide on acceptance 

- present customers to decide on intervention strategy 

Risk assessment and survival models are used by US cell-phone 
companies such as AT&T to manage churn. 
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Leaderboard Register Update Submit Download 

Rank Team Name 

1 The Ensemble 

2 BellKor's Pragmatic Chaos 

Grand Prize - RMSE <= 0.8563 

3 Grand Prize Team 

4 OQera Solutions and Vandelay United 

5 Vandelay Industries I 

6 PragmaUcTheory 

7 BellKor In BlgChaos 

8 Dace 

9 OQera Solutions 

10 BellKor 

Dlsplay top 20 ! leaders.Leaderboard 

Best Score % Improvement 

0.8553 10.10 

0.8554 10.09 

0.8571 9.91 

0.8573 9.89 

0.8579 9.83 

0.8582 9.80 

0.8590 9.71 

0.8603 9.58 

0.8611 9.49 

0.8612 9.48 

Last Submit Time 

2009--07-26 18:38:22 

2009--07-26 18:18:28 

2009--07-24 13:07:49 

2009--07-25 20:05:52 

2009--07-26 02:49:53 

2009--07-12 15:09:53 

2009--07-26 12:57:25 

2009--07-24 17:18:43 

2009--07-26 18:02:08 

2009-07-26 17:19:11 

Grand Prize: one million dollars, if beat Netflix's RMSE by 10%. 

Competition ends Sep 21, 2009 after � 3 years, two leaders, 41305 

teams! Ultimate winner is BellKor's Pragmatic Chaos. 
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I Net fl.ix Challenge I 

Netflix users rate movies from 1-5. Based on a history of ratings, 
predict the rating a viewer will give to a new movie. 

• Training data: sparse 400K (users) by 18K (movies) rating 
matrix, with 98.7% missing. About 100M movie/rater pairs. 

• Quiz set of about 1.4M movie/viewer pairs, for which 
predictions of ratings are required (N etflix held them back) 

• Probe set of about 1.4 million movie/rater pairs similar in 
composition to the quiz set, for which the ratings are known. 

• Both winning teams used ensemble methods to achieve their 
results. 
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I The Supervised Learning Problem I 

Starting point: 

• Outcome measurement Y ( also called dependent variable, 
response, target, output) 

• Vector of p predictor measurements X (also called inputs, 
regressors, covariates, features, independent variables) 

• In the regression problem, Y is quantitative ( e.g price, blood 
pressure, rating) 

• In classification, Y takes values in a finite, unordered set 
( default yes/no, churn/retain, spam/email) 

• We have training data (x1, Y1) , . . .  , (xN, YN) . These are 
observations (examples, instances) of these measurements. 
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I Objectives I 

On the basis of the training data we would like to: 

• Accurately predict unseen test cases for which we know X but 
do not know Y. 

• In the case of classification, predict the probability of an 
outcome. 

• Understand which inputs affect the outcome, and how. 

• Assess the quality of our predictions and inferences. 



12 Data Mining Trevor Hastie, Stanford University 

I More Examples I 

• Predict whether someone will have a heart attack on the basis 
of demographic, diet and clinical measurements 

• Determine whether an incoming email is "spam", based on 
frequencies of key words in the message 

• Identify the numbers in a handwritten zip code, from a 
digitized image 

• Estimate the probability that an insurance claim is fraudulent, 
based on client demographics, client history, and the amount 
and nature of the claim. 

• Predict the type of cancer in a tissue sample using DNA 
expression values 
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I Email or Spam? I 

• data from 4601 emails sent to an individual (named George, at 
HP labs, before 2000) . Each is labeled as uspam" or uemail". 

• goal: build a customized spam filter. 

• input features: relative frequencies of 57 of the most commonly 
occurring words and punctuation marks in these email 
messages. 

george you hp free edu remove 

spam 0.00 2.26 0.02 0.52 0.51 0.01 0.28 

email 1.27 1.27 0.90 0.07 0.11 0.29 0.01 

Average percentage of words or characters in an email message equal to 

the indicated word or character. We have chosen the words and 

characters showing the largest difference between spam and email. 
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Handwritten Digit Identification J 

A sample of segmented and normalized handwritten digits, scanned 
from zip-codes on envelopes. Each image has 16 x 16 pixels of 
grayscale values ranging from O - 255. 
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SICIIU2991D4 I Microarray Cancer Data I 
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Data Mining, Inference, and Prediction 

I Shameless self-promotion I 

All of the topics in this lecture are 

covered in the 2009 second edition 

of our 2001 book. 

The book blends traditional linear 

methods with contemporary non­

parametric methods, and many 

between the two. 
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I Ideal "Bayes" Predictions I 

• For a quantitative output Y, the best prediction we can make 
when the input vector X == x is 

f(x) == Ave(YIX == x) 

- This is the conditional expectation - deliver the Y-average 
of all those examples having X == x. 

- This is best if we measure errors by average squared error 

Ave(Y - J(X))2 
. 

• For a qualitative output Y taking values 1, 2, . . .  , M, compute 

- Pr(Y == mlX == x) for each value of m. This is the 
conditional probability of class m at X == x. 

- Classify C(x) == j if Pr(Y == jlX == x) is the largest - the 
majority vote classifier. 
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Implementation with Training Data 
J 

The ideal prediction formulas suggest a data implementation. To 
predict at X == x, gather all the training pairs (Xi, Yi) having 
Xi == x, then: 

• For regression, use the mean of their Yi to estimate 
J(x) == Ave(YIX == x) 

• For classification, compute the relative proportions of each 
class among these Yi, to estimate Pr(Y == mlX == x); Classify 
the new observation by majority vote. 

Problem: in the training data, there may be NO observations 
having Xi == x. 
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I Nearest Neighbor Averaging I 

• Estimate Ave(YIX == x) by 

Averaging those Yi whose Xi are in a neighborhood of x. 

• E.g. define the neighborhood to be the set of k observations 
having values Xi closest to x in euclidean distance Ilxi - xi I-

• For classification, compute the class proportions among these k 
closest points. 

• Nearest neighbor methods often outperform all other methods 
- about one in three times - especially for classification. 
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0U'.! 
0.,.... 

0 0 

0q 
.,.... 

I!) 

0 

I Kernel smoothing* I 
.• Smooth version of nearest-

neighbor averaging 

• At each point x, the function 
o

0

o 0 cP f(x) == Y(YIX == x) is esti-q 
0 

0 mated by the weighted aver-I!) 

0 
I 

0 age of the y's. 0 
q 
.,.... 

I 

0 

• The weights die down 
U'.! 
.,.... 

I 0 smoothly with distance from 
0.0 0.2 0.4 0.6 0.8 1.0 the target point x (indicated 

by shaded orange region). 

* not to be confused with "kernel methods" as in SVMs 



21 Data Mining Trevor Hastie, Stanford University 

I Structured Models I 

• When we have a lot of predictor variables, NN methods often 
fail because of the "curse of dimensionality" 

It is hard to find nearby points in high dimensions! 

• Near-neighbor models offer little interpretation. 

• We can overcome these problems by assuming some structure 
for the regression function Ave(YIX == x) or the probability 
function Pr(Y == klX == x). Typical structural assumptions: 

- Linear Models 

- Additive Models 

- Low-order interaction models 

- Restrict attention to a subset of predictors 

- . . . and many more 



 

e/30+,61 Xl +,62x2+ ... +J,pXp 

Pr(Y == +llX == x) == l + e/3o +,61x 1+ ,62x 2+ ... + fPxP 

log Pr(Y = -llX = 
x) 

22 

= /3o + f31x1 + f32 x2 + ... + (3pxp 
Pr(Y == +llX == x) 
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I Linear Models I 

• Linear models assume 

• For two class classification problems, linear logistic regression 

has the form 

• This translates to 

1w.. 1i..d1. 

,...,.n�,,,,..., 

Chapters 3 and 4 of deal with linear models. 
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I Linear Model Complexity Control I 

With many inputs, linear regression can overfit the training data, 
leading to poor predictions on future data. Two general remedies 
are available: 

• Variable selection: reduce the number of inputs in the model. 
For example, stepwise selection or best subset selection. 

• Regularization: leave all the variables in the model, but when 
fitting the model, restrict their coefficients. 

Ridge: I:5= 1 /3] < s. All the coefficients are non-zero, but 
are shrunk toward zero ( and each other) . 

Lasso: L5=1 l/3j I < s. Some coefficients drop out the model, 
others are shrink toward zero. 



 

R -0 res 

-

• 

• 

• 
• • 

• 
•• 

2
4

 
D

a
ta

 M
in

in
g

 
T

re
v

o
r H

a
stie

, 
S

ta
n

fo
rd

 U
n

iv
e
rsity

 

I B
est Subset Selection I 

00.....
 

• 
• 

ro 

0co
 

•• 
I • 

• 
• 

:::J
 

I 
I 

• 
&

 
co

 
• 

• 
..,!...

 

I 
• 

E
 

0
 

• 
•• 

I 
I 

ro :::J
 

-----
.. -

I I 
• : 

•
Cf)

 
I 

'Q"
 

:::J
 

I -
:2(/)Q)

 

o
 

-
1
-

i
_

. _
_ 

0N0
 

0
 

1 
2
 

3
 

4
 

5
 

6
 

7
 

8
 

S
u

b
s
e

t S
iz

e s
 

E
ach point corresponds to a linear m

odel involving a subset of the 
variables, and show

s the residual sum
-of-squares on the training 

data. T
he red m

odels are the candidates, and w
e need to choose s. 



 

 
 

 

o ffi nt 

\ · 
I \ 

Coefficients S ( s) 
2 00 0.2 0.4 6 

\ 

�
 

2
5
 

D
a

ta
 M

in
in

g
 

T
re

v
o

r H
a

stie
, 

S
ta

n
fo

rd
 U

n
iv

e
rsity

 

I R
id

g
e
 I 

I L
asso I 

CDci
 

,,,--..._
C/'J

,,_,,<CQ_
 

"ci
 

if]<l)
 

• u 
ci N

 

<l)

u
 
�NciI 

0
 

lcavol

svi 
I 

.,_-
/

 lw
eight 

.:_..
...-:

�
 

pgg45 

___..
...--

-
lbph

gleason 

age

lcp 

2
 

4
 

6
 

8
 

S
h

rin
k
a

g
e
 F

a
cto

r 
s
 

lcavol 

ci
 

svi 
-

---::
�

-:::
 lw

eight 
-

pgg45

lbph 

---------
-

-------------------..::;
g1easan-

age 

ciI 

lcp 

0
.0

 
Q

2
 

Q
4

 
Q

6
 

Q
B

 
,
n

 

S
h

rin
k
a

g
e
 F

a
cto

r 
s
 

B
oth ridge and lasso coeffi

cients paths can be com
puted very 

effi
ciently f or all valu

es of s. 



26 Data Mining Trevor Hastie, Stanford University 

I Overfitting and Model Assessment I 

• In all cases above, the larger s, the better we will fit the 
training data. Often we overfit the training data. 

• Overfit models can perform poorly on test data (high variance) . 

• Underfit models can perform poorly on test data (high bias) . 

Model assessment aims to 

1. Choose a value for a tuning parameter s for a technique. 

2. Estimate the future prediction ability of the chosen model. 

• For both of these purposes, the best approach is to evaluate the 
procedure on an independent test set, if one is available. 

• If possible one should use different test data for (1) and (2) 
above: a validation set for (1) and a test set for (2) 
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I K-Fold Cross-Validation I 

Primarily a method for estimating a tuning parameter s when data 
are scarce; we illustrate for the regularized linear regression models. 

• Divide the data into K roughly equal parts (5 or 10)
1 2 3 4 5 

Train Train Validation Train Train 

• for each k == 1, 2, . . .  K, fi. t the model with parameter s to the 
other K - 1 parts, giving � - k (s) and compute its error in 

• This gives the overall cross-validation error 
CV (s) == i( I,:[ 1 Ek (s) 

• do this for many values of s and choose the value of s that 
makes CV ( s) smallest. 
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I Cross-Validation Error Curve I 
• 10-fold CV error curve using 

lasso on some diabetes data 
( 64 inputs, 442 samples). 

• Thick curve is CV error curve 

• Shaded region indicates stan­
dard error of CV estimate. 

• Curve shows effect of over­
fitting - errors start to in­
crease above s == 0.2. 

• This shows a trade-off be­
0 .0  0 .2  0 .4  0 .6  0 . 8  1 . 0 tween bias and variance. 

Tuning Parameter s 
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Modern Structured Models in Data Mining
J 

The following is a list of some of the more important and currently 
popular prediction models in data mining. 

• Linear Models ( often heavily regularized) 

• Generalized Additive Models 

• Neural Networks 

• Hierarchical Bayesian Prediction Models 

• Trees, Random Forests and Boosted Tree Models - hot! 

• Support Vector and Kernel Machines - hot! 



  

 

Pr (Y = + 1 IX = :i;) 1. ( ) 1. ( ) 1. ( ) 
log ( I ) = eto + . 1 :r1 + 2 .1:2 + ... + ,, .r,, . 

Pr Y = -1 X = ,T 
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I Generalized Additive Models I 

Allow a compromise between linear models and more flexible local 
models (kernel estimates) when there are a many inputs 
X == (X1 , X2 , . . . , X

p ) .  

• Additive models for regression: 

• Additive models for classification: 

Each of the functions fj (xj ) ( one for each input variable) , can be a 
smooth function ( e.g. kernel estimate) , linear, or omitted. 
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I Neural Networks I 

output Layer 

Hidden Layer 

Input Layer 

Single (Hidden) Layer Perceptron 

• Like a complex regression or logis­
tic regression model - more flexi-
ble, but less interpretable - a "black 

box" . 

• Hidden units Z1 , Z2 , . . .  , Zm (4 here): 
Zj == a (  aoj + a3X)  
a (Z) == ez / (1 + ez ) is the logistic 
sigmoid activation function. 

• Output is a linear regression or logis­
tic regression model in the Zj . 

• Complexity controlled by m, ridge 
regularization, and early stopping of 
the backpropagation algorithm for fit­
ting the neural network. 
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I Support Vector Machines I 
• Maximize the gap (margin) 

between the two classes on the 
training data. Decisi :ou.ndary : ." • 

• If not separable 
T 

enlarge the feature space 
via basis expansions ( e.g. 
polynomials) . 

- use a asoft " margin ( allow 
limited overlap). 

• 
Margin 

• Solution depends on a small 
number of points ( asupport 
vectors "-') - 3 here. 

•
• • 

.. . • 

• 

, , 

• 
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I Support Vector Machines I 
• Maximize the soft margin sub­

ject to a bound on the totalX T /3 + /3o == Q • 

overlap : I: i �i < B .  

, 
• Even if data are separable, .. , 

, 
....... ...  ... 

, ' ,  

, ' , , 

•, ,., , , , Soft Ma gin 
wider soft margin more stable . ' ,  

,, . Primarily used for classifica­
tion problems. Builds a linear 
classifier f(X) == (30 + (3TX• 

Soft Margin If f(X) > 0, classify as +1, 
else if f(X) < 0, classify as 
-1. 

• Generalizations use kernels: f(X) == ao + I:� 1 aiK(X, xi ) 
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Classification and Regression Trees 
J 

✓ Can handle huge datasets 

✓ Can handle mixed predictors-quantitative and qualitative 

✓ Easily ignore redundant variables 

✓ Handle missing data elegantly 

✓ Small trees are easy to interpret 

X Large trees are hard to interpret 

X Often prediction performance is poor 
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I Tree fit to SP AM data I 
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I Ensemble Methods and Boosting I 

Classification trees can be simple, but often produce noisy (bushy) 
or weak (stunted) classifiers. 

• Bagging {Breiman, 1 996): Fit many large trees to 
bootstrap-resampled versions of the training data, and classify 
by majority vote. 

• Random Forests {Breiman 1999): Improvements over bagging. 

• Boosting {Freund f3 Shapire, 1 996): Fit many smallish trees to 
reweighted versions of the training data. Classify by weighted 
majority vote. 

In general Boosting >-- Random Forests >-- Bagging >-- Single Tree. 
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Modern Gradient Boosting (Friedman, 2001)  
J 

• Fits an additive model 

where each of the Tj (X) is a tree in X. 

• Can be used for regression, logistic regression and more. For 
example, gradient boosting for regression works by repeatedly 
fitting trees to the residuals: 

1. Fit a small tree T1 (X) to Y. 

2. Fit a small tree T2 (X) to the residual Y - T1 (X). 

3. Fit a small tree T3 (X) to the residual Y - T1 (X) - T2 (X). 
and so on. 

• m is the tuning parameter, which must be chosen using a 
validation set (m too big will overfit) . 
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I Software I 

• R is free software for statistical modeling, graphics and a 
general programming environment. Works on PCs, Macs and 
Linux/Unix platforms. All the models here can be fit in R. R 
grew from its predecessor Splus, and both implement the S 
language developed at Bell Labs in the 80s. 

• SAS and their Enterprise Miner can fit most of the models 
mentioned in this talk, with good data-handling capabilities, 
and high-end user interfaces. 

• Salford Systems has commercial versions of trees, random 
forests and gradient boosting. 

• SVM software is all over, but beware of patent infringements if 
put to commercial use. 

• Many free versions of neural network software; Google will find. 
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1 summary l 

• Many amazing tools are available, from the simplest linear 
models to complex boosting algorithms. 

• A void unwarranted complexity ; if linear models perform well, 
they are easier to manage than more complex models. 

• Boosting provides a good benchmark for what performance 
might be achievable. 

• A good software environment is essential; if R can manage your 
problem size, its a great environment. 
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	• 
	• 
	• 
	We have a collection of data pertaining to our business, industry, production process, monitoring device, etc. 

	• 
	• 
	Often the goals of data-mining are vague, such as "look for patterns in the data" -not too helpful. 

	• 
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	• 
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	Data-mining is particularly good at building such prediction models -an area known as "supervised learning". 


	I Example: Credit Risk Assessment I 
	• 
	• 
	• 
	Customers apply to a bank for a loan or credit card. 

	• 
	• 
	They supply the bank with information such as age, income, employment history, education, bank accounts, existing debts, etc. 

	• 
	• 
	The bank does further background checks to establish credit history of customer. 

	• 
	• 
	Based on this information, the bank must decide whether to make the loan or issue the credit card. 


	Example continued: Credit Risk Assessment 
	J 
	• 
	• 
	• 
	The bank has a large database of existing and past customers. Some of these defaulted on loans, others frequently made late payments etc. An outcome variable "Status" is defined, taking value "good" or "default". Each of the past customers is scored with a value for status. 

	• 
	• 
	Background information is available for all the past customers. 

	• 
	• 
	Using supervised learning techniques, we can build a risk prediction model that takes as input the background information, and outputs a risk estimate (probability of def a ult) for a prospective customer. 


	The California based company Fair-Isaac uses a generalized additive model + boosting methods in the construction of their credit risk scores. 
	Example: Churn Prediction I 
	I 

	• 
	• 
	• 
	• 
	When a customer switches to another provider, we call this 

	uchurn". Examples are cell-phone service and credit card providers. 

	• 
	• 
	• 
	Based on customer information and usage patterns, we can predict 

	-the probability of churn -the retention probability ( as a function of time) 

	• 
	• 
	This information can be used to evaluate -prospective customers to decide on acceptance -present customers to decide on intervention strategy 


	Risk assessment and survival models are used by US cell-phone companies such as AT&T to manage churn. 
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	Grand Prize: one million dollars, if beat Netflix's RMSE by 10%. Competition ends Sep 21, 2009 after Ł 3 years, two leaders, 41305 teams! Ultimate winner is BellKor's Pragmatic Chaos. 
	I Net fl.ix Challenge I 
	Netflix users rate movies from 1-5. Based on a history of ratings, predict the rating a viewer will give to a new movie. 
	• 
	• 
	• 
	Training data: sparse 400K (users) by 18K (movies) rating matrix, with 98.7% missing. About 100M movie/rater pairs. 

	• 
	• 
	Quiz set of about 1.4M movie/viewer pairs, for which predictions of ratings are required (N etflix held them back) 

	• 
	• 
	Probe set of about 1.4 million movie/rater pairs similar in composition to the quiz set, for which the ratings are known. 

	• 
	• 
	Both winning teams used ensemble methods to achieve their results. 


	The Supervised Learning Problem I 
	I 

	Starting point: 
	• 
	• 
	• 
	Outcome measurement Y ( also called dependent variable, response, target, output) 

	• 
	• 
	Vector of p predictor measurements X (also called inputs, regressors, covariates, features, independent variables) 

	• 
	• 
	In the regression problem, Y is quantitative ( e.g price, blood pressure, rating) 

	• 
	• 
	In classification, Y takes values in a finite, unordered set ( default yes/no, churn/retain, spam/email) 

	• 
	• 
	We have training data (x1, Y1), ... , (xN, YN). These are observations (examples, instances) of these measurements. 


	I Objectives I 
	On the basis of the training data we would like to: 
	• 
	• 
	• 
	Accurately predict unseen test cases for which we know X but do not know Y. 

	• 
	• 
	In the case of classification, predict the probability of an outcome. 

	• 
	• 
	Understand which inputs affect the outcome, and how. 

	• 
	• 
	Assess the quality of our predictions and inferences. 


	I More Examples I 
	• 
	• 
	• 
	Predict whether someone will have a heart attack on the basis of demographic, diet and clinical measurements 

	• 
	• 
	Determine whether an incoming email is "spam", based on frequencies of key words in the message 

	• 
	• 
	Identify the numbers in a handwritten zip code, from a digitized image 

	• 
	• 
	Estimate the probability that an insurance claim is fraudulent, based on client demographics, client history, and the amount and nature of the claim. 

	• 
	• 
	Predict the type of cancer in a tissue sample using DNA expression values 


	I Email or Spam? I 
	• 
	• 
	• 
	data from 4601 emails sent to an individual (named George, at HP labs, before 2000). Each is labeled as uspam" or uemail". 

	• 
	• 
	goal: build a customized spam filter. 

	• 
	• 
	input features: relative frequencies of 57 of the most commonly occurring words and punctuation marks in these email messages. 


	george 
	george 
	george 
	you 
	hp 
	free 
	edu 
	remove 

	spam 
	spam 
	0.00 
	2.26 
	0.02 
	0.52 
	0.51 
	0.01 
	0.28 

	email 
	email 
	1.27 
	1.27 
	0.90 
	0.07 
	0.11 
	0.29 
	0.01 


	Average percentage of words or characters in an email message equal to the indicated word or character. We have chosen the words and characters showing the largest difference between spam and email. 
	Handwritten Digit Identification 
	J 

	Figure
	A sample of segmented and normalized handwritten digits, scanned from zip-codes on envelopes. Each image has 16 x 16 pixels of grayscale values ranging from O -255. 
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	Figure
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	Figure
	Shameless self-promotion I 
	I 

	All of the topics in this lecture are covered in the 2009 second edition of our 2001 book. The book blends traditional linear methods with contemporary non­parametric methods, and many between the two. 
	Ideal "Bayes" Predictions I 
	I 

	• For a quantitative output Y, the best prediction we can make when the input vector X == x is 
	f(x) == Ave(YX == x) 
	I

	-This is the conditional expectation -deliver the Y-average of all those examples having X == x. 
	-This is best if we measure errors by average squared error Ave(Y -J(X)). 
	2 

	• For a qualitative output Y taking values 1, 2, ... , M, compute -Pr(Y == mlX == x) for each value of m. This is the conditional probability of class m at X == x. 
	-Classify C(x) == j if Pr(Y == jlX == x) is the largest -the majority vote classifier. 
	Implementation with Training Data 
	J 
	The ideal prediction formulas suggest a data implementation. To predict at X == x, gather all the training pairs (Xi, Yi) having Xi == x, then: 
	• 
	• 
	• 
	For regression, use the mean of their Yi to estimate J(x) == Ave(YIX == x) 

	• 
	• 
	For classification, compute the relative proportions of each class among these Yi, to estimate Pr(Y == mlX == x); Classify the new observation by majority vote. 


	Problem: in the training data, there may be NO observations having Xi == x. 
	I Nearest Neighbor Averaging I 
	• Estimate Ave(YIX == x) by 
	Averaging those Yi whose Xi are in a neighborhood of x. 
	• 
	• 
	• 
	E.g. define the neighborhood to be the set of k observations having values Xi closest to x in euclidean distance Ilxi -xI
	i
	-
	-



	• 
	• 
	For classification, compute the class proportions among these k closest points. 

	• 
	• 
	Nearest neighbor methods often outperform all other methods -about one in three times -especially for classification. 


	I Kernel smoothing* I 
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	Figure
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	.
	• 
	• 
	• 
	Smooth version of nearest-neighbor averaging 

	• 
	• 
	At each point x, the function 


	q 
	0 
	.,.... 
	I 
	0 
	• The weights die down 
	U'.! 
	.,.... 
	I 
	0 
	smoothly with distance from 
	0.0 0.2 0.4 0.6 0.8 1.0 
	the target point x (indicated by shaded orange region). 
	* not to be confused with "kernel methods" as in SVMs 
	I Structured Models I 
	• When we have a lot of predictor variables, NN methods often fail because of the "curse of dimensionality" 
	It is hard to find nearby points in high dimensions! 
	• 
	• 
	• 
	Near-neighbor models offer little interpretation. 

	• 
	• 
	We can overcome these problems by assuming some structure for the regression function Ave(YIX == x) or the probability function Pr(Y == klX == x). Typical structural assumptions: 


	-Linear Models -Additive Models -Low-order interaction models -Restrict attention to a subset of predictors -. . . and many more 
	Pr(Y == +llX == x) 
	Linear Models I 
	I 

	• 
	• 
	• 
	Linear models assume 

	• 
	• 
	For two class classification problems, linear logistic regression has the form 

	• 
	• 
	This translates to 


	Figure
	Figure
	1w.. 1i..d1
	. 
	,...,.nŁ,,,,..., 
	Chapters 3 and 4 of deal with linear models. 
	Linear Model Complexity Control I 
	I 

	With many inputs, linear regression can overfit the training data, leading to poor predictions on future data. Two general remedies are available: 
	• 
	• 
	• 
	Variable selection: reduce the number of inputs in the model. For example, stepwise selection or best subset selection. 

	• 
	• 
	Regularization: leave all the variables in the model, but when 


	fitting the model, restrict their coefficients. Ridge: I:5=/3] s. All the coefficients are non-zero, but are shrunk toward zero ( and each other). 
	1 
	< 

	Lasso: L5=l/3I s. Some coefficients drop out the model, others are shrink toward zero. 
	1 
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	Each point corresponds to a linear model involving a subset of the variables, and shows the residual sum-of-squares on the training data. The red models are the candidates, and we need to choose s. 
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	I 
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	Both ridge and lasso coefficients paths can be computed very efficiently for all values os. 
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	I Overfitting and Model Assessment I 
	• 
	• 
	• 
	In all cases above, the larger s, the better we will fit the training data. Often we overfit the training data. 

	• 
	• 
	Overfit models can perform poorly on test data (high variance). 


	• Underfit models can perform poorly on test data (high bias). Model assessment aims to 
	1. 
	1. 
	1. 
	Choose a value for a tuning parameter s for a technique. 

	2. 
	2. 
	Estimate the future prediction ability of the chosen model. 


	• 
	• 
	• 
	For both of these purposes, the best approach is to evaluate the procedure on an independent test set, if one is available. 

	• 
	• 
	If possible one should use different test data for (1) and (2) above: a validation set for (1) and a test set for (2) 


	I K-Fold Cross-Validation I 
	Primarily a method for estimating a tuning parameter s when data are scarce; we illustrate for the regularized linear regression models. 
	• Divide the data into K roughly equal parts (5 or 10)
	1 2 3 4 5 
	Train Train Validation Train Train 
	• 
	• 
	• 
	• 
	for each k == 1, 2, ... K, fi. t the model with parameter s to the 

	other K -1 parts, giving Ł-k(s) and compute its error in 

	• 
	• 
	This gives the overall cross-validation error CV (s) == i( I,:[ Ek (s) 
	1 


	• 
	• 
	do this for many values of s and choose the value of s that makes CV ( s) smallest. 


	I Cross-Validation Error Curve I 
	• 10-fold CV error curve using lasso on some diabetes data 
	0 
	0 
	0 
	( 64 inputs, 442 samples). 
	Figure
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	Tuning Parameter s 
	Modern Structured Models in Data Mining
	J 
	The following is a list of some of the more important and currently popular prediction models in data mining. 
	• 
	• 
	• 
	Linear Models ( often heavily regularized) 

	• 
	• 
	Generalized Additive Models 

	• 
	• 
	Neural Networks 

	• 
	• 
	Hierarchical Bayesian Prediction Models 

	• 
	• 
	Trees, Random Forests and Boosted Tree Models -hot! 

	• 
	• 
	Support Vector and Kernel Machines -hot! 


	I Generalized Additive Models I 
	Allow a compromise between linear models and more flexible local models (kernel estimates) when there are a many inputs 
	X == (X,X2,...,X ).
	1

	p 
	• 
	• 
	• 
	Additive models for regression: 

	• 
	• 
	Additive models for classification: 


	Figure
	Figure
	Each of the functions f(x) ( one for each input variable), can be a smooth function ( e.g. kernel estimate), linear, or omitted. 
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	hp hpl 
	• 
	• 
	• 
	Overall error rate 5.3% . 

	• 
	• 
	Functions can be re-parametrized ( e.g. log terms, quadratic, step-functions), and then fit by linear model. 


	r • Produces a prediction per email Pr(SPAMIX == x) 
	0 5000 10000 15000 
	CAPTOT 
	r· II I n1 I I 0 2000 6000 10000 CAPMAX 
	01 23456 
	ch$ 
	,,--_, Q) 
	Q) Ł 
	1--1 'H
	'-" 
	<<+-, 
	,,--_, 
	Q)
	bO 

	1--1 a 0 
	Q)
	bO 

	<Ł"I 
	0 
	Figure
	0 2 4 6 8 
	our 
	,,--_, 0 
	!ll 
	-

	!ll 
	Ł1Ł 

	Q) 
	0 ,J' 
	0 ,J' 
	0 ,J' 
	'-" 0 

	TR
	'1 

	0 
	0 
	2 
	4 
	6 
	8 
	10 


	free 
	Figure
	0 10 20 30 
	george 
	..c: 
	u 
	'-" 0 
	<<+-, 
	Figure
	0 10 20 30 
	ch ! 
	I Neural Networks I 
	Input Layer 
	• Like a complex regression or logis­tic regression model -more flexi
	-

	output Layer ble, but less interpretable -a "black box". 
	• Hidden units Z1, Z2, ... , Z(4 here): Z== a( aoj + a3X)
	m 
	j 

	Hidden Layer 
	a(Z) == e/ (1 + e) is the logistic sigmoid activation function. 
	z 
	z 

	• Output is a linear regression or logis­tic regression model in the Z. 
	j 

	• Complexity controlled by m, ridge regularization, and early stopping of the backpropagation algorithm for fit­ting the neural network. 
	Single (Hidden) Layer Perceptron 

	I Support Vector Machines I 
	• Maximize the gap (margin) between the two classes on the training data. 
	Decisi :ou.ndary : ." • 
	• If not separable 
	T 
	enlarge the feature space via basis expansions ( e.g. polynomials) . 
	-use a asoft " margin ( allow limited overlap). 
	• Margin 
	• Solution depends on a small number of points ( asupport vectors"-') -3 here. 
	•• • .. . • • , , • 
	Figure
	I Support Vector Machines I 
	• Maximize the soft margin sub­ject to a bound on the total
	X T /3 + /3o == Q • overlap: I:ŁB. 
	i 
	i 
	< 

	• Even if data are separable, 
	, 
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	... 
	....... ... 
	wider soft margin more stable . 
	, 
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	, 
	',
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	,
	.
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	Soft Ma gin 

	', 
	,, 
	Primarily used for classifica­tion problems. Builds a linear classifier f(X) == (3+ (3X
	. 
	0 
	T

	• 
	Soft Margin 
	If f(X) > 0, classify as +1, else if f(X) < 0, classify as -1. 
	• Generalizations use kernels: f(X) == ao + I:Ł aiKX, xi
	1 
	(
	) 

	Classification and Regression Trees 
	J 
	✓ Can handle huge datasets 
	✓ Can handle mixed predictors-quantitative and qualitative 
	✓ Easily ignore redundant variables 
	✓ Handle missing data elegantly 
	✓ Small trees are easy to interpret 
	X Large trees are hard to interpret 
	X Often prediction performance is poor 
	Figure
	Data Mining Trevor Hastie, Stanford University 
	I Tree fit to SP AM data I 
	Figure
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	our< .2 
	/ our>l.2 
	Ensemble Methods and Boosting I 
	I 

	Classification trees can be simple, but often produce noisy (bushy) or weak (stunted) classifiers. 
	• Bagging {Breiman, 1996): Fit many large trees to bootstrap-resampled versions of the training data, and classify by majority vote. 
	• Random Forests {Breiman 1999): Improvements over bagging. 
	• Boosting {Freund f3 Shapire, 1996): Fit many smallish trees to reweighted versions of the training data. Classify by weighted majority vote. 
	In general Boosting >--Random Forests >--Bagging >--Single Tree. 
	Spam Data 
	0 
	0 Bagging 0 
	Random Forest Gradient Boosting (5 Node) 
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	Modern Gradient Boosting (Friedman, 2001) 
	J 
	• Fits an additive model 
	Figure
	where each of the T(X) is a tree in X. 
	j 

	• 
	• 
	• 
	• 
	Can be used for regression, logistic regression and more. For example, gradient boosting for regression works by repeatedly fitting trees to the residuals: 

	1. 
	1. 
	1. 
	Fit a small tree T(X) to Y. 
	1 


	2. 
	2. 
	Fit a small tree T2(X) to the residual Y -T1 (X). 

	3. 
	3. 
	Fit a small tree T(X) to the residual Y -T(X) -T(X). and so on. 
	3 
	1 
	2 




	• 
	• 
	m is the tuning parameter, which must be chosen using a validation set (m too big will overfit). 


	I Software I 
	• 
	• 
	• 
	R is free software for statistical modeling, graphics and a general programming environment. Works on PCs, Macs and Linux/Unix platforms. All the models here can be fit in R. R grew from its predecessor Splus, and both implement the S language developed at Bell Labs in the 80s. 

	• 
	• 
	SAS and their Enterprise Miner can fit most of the models mentioned in this talk, with good data-handling capabilities, and high-end user interfaces. 

	• 
	• 
	Salford Systems has commercial versions of trees, random forests and gradient boosting. 

	• 
	• 
	SVM software is all over, but beware of patent infringements if put to commercial use. 

	• 
	• 
	Many free versions of neural network software; Google will find. 


	1summaryl 
	• 
	• 
	• 
	Many amazing tools are available, from the simplest linear models to complex boosting algorithms. 

	• 
	• 
	A void unwarranted complexity ; if linear models perform well, they are easier to manage than more complex models. 

	• 
	• 
	Boosting provides a good benchmark for what performance might be achievable. 

	• 
	• 
	A good software environment is essential; if R can manage your problem size, its a great environment. 








