

Infovis and Statistical Graphics

Andrew Gelman and Antony Unwin Columbia University and University of Augsburg

Empirical Legal Studies Conference, 5 Nov 2011

African Countries by GDP

TOP COUNTRIES BY GDP IN U.S. \$ BILLIONS

Gross domestic product (GDP) refers to the market value of all final goods and services produced within a country in a given period (2005 - 2009).

GDP CALCULATION

private consumption + gross investment + government spending + (exports – imports)

The informative (but boring) stat graphic

African Countries by GDP

Different tools, different goals

Can we uncover the differences between the values and priorities of infovis and statistical graphics?

5 Best Data Visualization Projects of the Year

December 19, 2008 to Featured, Visualization | Post on Twitter

Honorable mention: Wordle

Jonathan Feinberg, wordle.com

- Nathan Yau: "It's hard to say what exactly made Wordle so popular, but I [Yau] think it was a mix of randomness, aesthetics, and customization options
- Our view: Visualization as a fun puzzle

#3. Box office streamgraphs

Lee Byron

 Yau: "You can see Oscar contenders attract a smaller audience than the holiday and summer blockbusters and kind of slowly build an

audience."

Our view:

- Huh?
- Better to have two graphs:

- (1) total sales over time, (2) trajectories for individual movies
- Again, graph as puzzle

• Yau: "Discussion burst out across the Web . . . that I am convinced would not have come about if instead of a Streamgraph, they used say, a **stacked bar chart.**" [emphasis added]

"5 Best Data Visualizations": our view

- Eye-catching graphics
- State-of-the art methods in stat and comp sci
- No attempt to achieve the traditional goals of statistical graphics (communication, discovery)

Winner of *Guardian* newspaper's Visualization Contest

Final Destination

Density of fatal accidents 1942-2009

David McCandless

• Our view:

- Display looks clean and efficient but isn't!
- Analogy to some modern architecture

MOST POPULAR INFOGRAPHICS AROUND THE WEB

Florence Nightingale's coxcomb

http://www.Florence-Nightingale-Avenging-Angel.co.uk/Coxcomb.htm

Our view:

 Excellent "infographic"—it's attractive, grabby, thought-provoking

- Graph as puzzle
- Not a good "statistical graphic," does not push to deeper understanding
- "Clock plot" as dead end

Mortality rates in the Crimean War from April 1854 to March 1856

British Army Size in the Crimean War from April 1854 to March 1856

Challenges in effectiveness research

information aesthetics. Where form follows data.

SUGGEST

ARCHIV

Research: Why Chart Junk is More Useful than Plain Graphs

"Yep, it has been scientifically proven: the accuracy of people in describing charts with 'chart junk' is no worse than for plain charts, and the recall after a 2-3 week gap was actually significantly better. In addition, people overwhelmingly preferred 'chart junk' diagrams . . ."

But, before you go and slashdot this . . .

The "chartjunk" study is . . . junk!

OK. Good chartjunk is better than crap chartjunk

Some practical tips

- Line plots and small multiples
- Avoid the graphical equivalent of the data dump
- Don't try to cram everything into one plot
- Combine graphics with text
 - A picture plus 1000 words is worth more than two pictures or 2000 words

Category	Sample Size	Percentage	Proportion Supporting Death Penalty
Men	26953	(46%)	-
Women	31300	(54%)	→
Black	6516	(11%)	
Non-black	51737	(89%)	•
18–29	12460	(21%)	-
30-44	18619	(32%)	-•-
45-64	17526	(30%)	-
65+	9648	(17%)	-• -
Less than High Scho	ool 18211	(31%)	
High School	25010	(43%)	-
Some College	5415	(9%)	
College grad	7170	(12%)	—
Grad School	2447	(4%)	—• —
			į
		0.45	0.65
		0.45	0.55 0.65 0.75

Yearly Estimates by Race and Sex Non-black Male residuals 0.10 1.0 Non-black Male Non-black Female 0.05 Black Male Black Female 0.00 National Average 8.0 -0.05 -0.10Support 1955 1970 1985 2000 0.6 **Black Male residuals** 0.4 0.2 0.4 0.0 -0.20.2 -0.41955 1965 1975 1985 1995 2005 1955 1970 1985 2000

Graphing data and fitted models

OH (Midwest); Mean yearly sample size = 85

INCOME

Last letters of boys' names, 100 yrs ago

John, James, Edward, George, Henry, . . .

Last letters of boys' names, 50 yrs ago

Michael, Thomas, Larry, Jeffrey, . . .

Last letters of boys' names, now

Ethan (#8), John (18), Jonathan (19), Brandon (21), Christian (22), Dylan (23), also #25, 27, 28, 29, . . .

The trend in last letters of boys' names

The long tail . . . and the paradox of freedom

Conclusion: Infovis vs. stat graphics

- Infovis:
 - Visual creativity, up-to-the-minute technology
 - Puzzles and the joy of recognition
- Statistical graphics:
 - Replication of standard forms
 - Discovery of the unexpected
- We can work together