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Method for inference for parameters that 

Depend on an unknown probability distribution F 

Example: 

F as distribution of £i in regression model 

Sometimes defined by Monte Carlo re-sampling 

Re-sampling, yes. 

MC not strictly necessary (though virtually always done) 

BS can be used for bias correction, too 

won't discuss this-focus on inference I 







Typical method 

Construct statistic Tn 

Use asymptotic theory to find critical values 

Example: A.d. of t-statistics is N (0, 1) 

Reject if I Tn I > z,_0 or z,_012,as appropriate 



The Basic BS Routine 

Take observed sample S
n 

= {X
1 
,X

2
, • . • , X

n
} 

Calculate statistic of interest 
Xbar = n-1 Li=l ton xi 

Do the following routine B times 
Draw n times w /replacement to create 

sn b = {X l b 1 x 2 b 1 • • • 1 x n b}, , , ,
Calculate some statistic en b 

Do something with e
n B' = {0n' ' 1,en'2, ... en'13}/ 





rb=l to sl[Tn b < t]. 
I 

(3) (ii) 8 n b = Tn b = Xbarn b / (Vn b) ½ [Note the "Ii tt I e b"]
I I I I 

(4) Let G(t) = Pr[Tn b < t]
I 

Estimate the critical value ta such that 

G(ta ) = Pr[Tn b < ta] = a
I 

Do this with Ghat defined by 

G hat(t) = s-1 

Estimated critical value is t-hat a : 

fraction a of Tn,b realizations is less than t-hat a 



Suppose we want to estimate V (Ybar) 

Typically there's an analytical estimator. 

But for the sake of argument: 

Population resampling would be kosher (if infeasible) 

A very large, representative subpop would work, too 

Why? Subpop EDF is consistent for population distribution 

Have to do the resampling with replacement 

Sample EDF itself also consistent for pop distribution! 

So we can just as well resample from the original sample 

Census wages example: Paper 1, Table 1 



BSing the s.e. 
First-order equivalent to using asymptotic theory 

BSing the critical value of the t-statistic 
Increases convergence rate by order of 
magnitude 

Error rates: 
ahat

BssE - a--+ 0, but nr( ahat
BssE - a) does not for r>0 

ahat
FOAT - a--+ 0, but nr( ahat

FOAT 
- a) does not for r>0 

ahat
Bs T- a--+ 0, but nr(ahat

Bs T- a) does for r<l/2 

So, when the sample size is small, BS-T is better 
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The secret to getting improved convergence is 

Bootstrap something whose a.d. is known 

The t-statistic has a.d. N(0,1) 

It is "asymptotically pivotal" 

The s.e. has unknown a.d. 

So t-statistic based on BSSE is not asymptotically pivotal 

Can generalize idea to many a.p. statistics 

Reasons are deep and pretty technical 



The Basic Model 

• There are G groups (clusters). Ex: Federal circuits. 

•N
9 

observations in each group that can vary 

•Cross-sectionally 

•Over time 

•Want to do inference on f3, e.g., H 0: f3=0 

•, 

y8 = Xg � + Ug, g = l ... , G ( 1 

y = x� + u, 



People usually follow famous BDM {2004) paper 

Use "cluster-robust" covariance estimator 

E.g., cluster on federal circuit 

This works under two assumptions: 

No correlation in residuals across circuits 

Enough G for "middle matrix" to be good 

approximation to its expectation. 

(Problem: C=12 not bigl) 





Cameron, Gelbach & Miller {2008, ReStat) 

Treat clusters like individual observations 

Re-sample whole clusters at a time (BDM did this) 

But: use BS-t to take advantage of convergence rate 

Simulations in CGM show BS-t does very well 

Useful to impose null hypothesis via "wild bootstrap" 

Difficult to do in nonlinear models (e.g., probit) 

But Pat Kline & Andres Santos show alternative 



(0.014) 

(0.009) 

TABLE 3.-1,000 SIMULATIO 'S FROM DGP WITH GROUP-LEVEL RAt DOM ERRORS AND HETEROSKEDASTICITY 
(Rejection rate for test of nominal ize 0.05 with imulation standard error in parenthe e.) 

umber of Groups (G)Estimator 
# Method s 10 15 20 25 30 

A ume i.i.d. 0.302 0.288 0.307 0.295 0.287 0.297 
(0.015) (0.015) (0.014) (0.014) (0.014) 

3 Clusler-robu. t 0.208 0.118 0.110 0.081 0.072 0.068 
(0.013) (0.010) (0.010) (0.008) (0.008) 

10 Pair clu ter boot trap-l 0.079 0.067 0.074 0.058 0.054 0.053 
(0.009) (0.008) (0.008) (0.007) (0.007) (0.007)

13 Wild clu. ter boot. trap-t 0.053 0.056 0.058 0.048 0.041 0.044 
(0.007) (0.007) (0.007) (0.007) (0.006) (0.006) 
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Helpful for power 
Also related to size based on Monte Carlos 

Impossible with pairs resampling 
Possible with parametric forms 

Fully parametric bootstrap 

Residual bootstrap 

Wild bootstrap 



Recall 

Y = X � + U 
g g g 

First estimate (say, via OLS), to get 
�hat 
Uhat {uhat

9
}, g=l ,2, ... G. 

Then re-sample G times from Uhat & create 
yg b = X �hat + uhat b , 9 9, 

Then re-run OLS of Y 
g ,b on X 

g 
to get �hotb 

Then do inference using {0hat b} 



The bootstrap can fail: 

Boundary problems 

X -- U(a,b) 

Non-smooth problems 

But note that quantiles/qreg OK 

Mass points 

Nearest-neighbor matching 



BS isn't only "non-standard" approach 

Randomization inference 

Requires known null hypothesis 

Sub-sampling 

Re-sample without replacement 

Use sample sizes m<n; have to choose m 

Asymptotic theory 

Student's t with df correction 
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