Bootstrap Basics Jonah B. Gelbach CELS Presentation November 4, 2011

What Is the Bootstrap?

Method for inference for parameters that

- > Depend on an unknown probability distribution F
- > Example:
 - F as distribution of ε_i in regression model
- Sometimes defined by Monte Carlo re-sampling
 - > Re-sampling, yes.
 - MC not strictly necessary (though virtually always done)
- BS can be used for bias correction, too
 - I won't discuss this—focus on inference

Why Use the Bootstrap

Three potential reasons

- 1. Standard theory correct but difficult to implement
- 2. Multiple testing problems
- 3. Small n makes asymp approximation problematic

Asymptotic v. BS Methods

Conventional asymptotic methods

- Estimate parameter of interest
- > Use asymptotic theory to estimate parameter's <u>a.d.</u>
- Base inference on estimated <u>asymptotic distribution</u>

BS methods

- Estimate parameter of interest
- Find a consistent estimate of F; call it F-hat
- > Use F-hat's properties to calculate either
 - Test statistic or
 - Critical values of test statistic's distribution in size-n sample

Asymptotic Inference

Typical method

- > Construct statistic $\overline{T_n}$
- > Use asymptotic theory to find critical values
- > Example: A.d. of t-statistics is N(0,1)
- > Reject if $|T_n| > z_{1-a}$ or $z_{1-a/2}$, as appropriate

The Basic BS Routine 1) Take observed sample $S_n = \{X_1, X_2, \dots, X_n\}$ 2) Calculate statistic of interest Xbar = $n^{-1}\Sigma_{i=1 \text{ to } n}X_i$ 3) Do the following routine B times Draw n times w/replacement to create $S_{n,b} = \{X_{1,b}, X_{2,b}, \dots, X_{n,b}\}$ Calculate some statistic $\theta_{n,b}$ 4) Do something with $\Theta_{n,B} = \{\theta_{n,1}, \theta_{n,2}, \dots, \theta_{n,B}\}$

Example 1: BS Standard Error

(3) (ii) $\theta_{n,b} = Xbar_{n,b} = n \, {}^{1}\Sigma_{i=1 \text{ to } n}X_{i}$ (4) Calculate variance estimate $V_{n,B} = n \, {}^{1}\Sigma_{i=1 \text{ to } n}(Xbar_{n,b} - Xbar_{n})^{2}$

Notes:

- > Xbar_n is the true mean of the $\theta_{n,b}$ distribution
- > Typical people then test

 $T_{n,B} = Xbar_n / (V_{n,B})^{1/2}$

against the critical values of the SN distribution

This makes sense only if it's tough to estimate V

Example 2: BS T

(3)(ii) $\theta_{n,b} = T_{n,b} = Xbar_{n,b}/(V_{n,b})\frac{1}{2}$ [Note the "little b"]

(4) Let $G(t) = Pr[T_{n,b} \le t]$

- Estimate the <u>critical value</u> t_{α} such that $G(t_{\alpha}) \equiv Pr[T_{n,b} \leq t_{\alpha}] = \alpha$
- Do this with Ghat defined by

Ghat(t) $\equiv B^{-1}\Sigma_{b=1 \text{ to } B} \mathbb{1}[T_{n,b} \leq t].$

Estimated critical value is t-hat $_{\alpha}$: fraction α of $T_{n,b}$ realizations is less than t-hat $_{\alpha}$

Why Resampling Works

- Suppose we want to estimate V(Ybar)
- Typically there's an analytical estimator.
- But for the sake of argument:
 - Population resampling would be kosher (if infeasible)
 - A very large, representative subpop would work, too
 - Why? Subpop EDF is consistent for population distribution
 - Have to do the resampling with replacement
 - Sample EDF itself also consistent for pop distribution!
 - So we can just as well resample from the original sample
- Census wages example: Paper 1, Table 1

The Bootstrap-T is Better

- BSing the s.e.
 - First-order equivalent to using asymptotic theory
- BSing the critical value of the t-statistic
 - Increases convergence rate by order of magnitude
- Error rates:
 - > $\alpha hat_{BSSE} \alpha \rightarrow 0$, but $n^r(\alpha hat_{BSSE} \alpha)$ does not for r>0
 - > $\alpha hat_{FOAT} \alpha \rightarrow 0$, but $n^r(\alpha hat_{FOAT} \alpha)$ does not for r>0
 - $\alpha hat_{BS T} \alpha \rightarrow 0$, but $n^r(\alpha hat_{BS T} \alpha)$ does for r<1/2
- So, when the sample size is small, BS-T is better

Convergence Rate -

Convergence Rate - 2

Asymptotic Refinement

The secret to getting improved convergence is

- Bootstrap something whose a.d. is <u>known</u>
- > The t-statistic has a.d. N(0,1)
 - It is "asymptotically pivotal"
- > The s.e. has unknown a.d.
 - So t-statistic based on BSSE is not asymptotically pivotal
- Can generalize idea to many a.p. statistics
- Reasons are deep and pretty technical

Application: Regression With Clustering

The Basic Model

There are G groups (clusters). Ex: Federal circuits.
 N_g observations in each group that can vary

 Cross-sectionally
 Over time

•Want to do inference on β , e.g., H₀: β =0

$$y_{ig} = \mathbf{x}'_{ig}\mathbf{\beta} + u_{ig}, \quad i = 1, \dots, N_g, \quad g = 1, \dots, G,$$
$$\mathbf{y}_g = \mathbf{X}_g\mathbf{\beta} + \mathbf{u}_g, \quad g = 1, \dots, G,$$
$$\mathbf{y} = \mathbf{X}\mathbf{\beta} + \mathbf{u},$$
(1)

Application: Regression With Clustering

People usually follow famous BDM (2004) paper

- > Use "cluster-robust" covariance estimator
- E.g., cluster on federal circuit
- This works under two assumptions:
 - **1.** No correlation in residuals <u>across</u> circuits
 - 2. Enough G for "middle matrix" to be good approximation to its expectation.
- (Problem: C=12 not big!)

Application: **Regression With Clustering** The middle matrix is based on > Huber-White-Eicker etc idea No cross-cluster conditional dependence in u > Arbitrary within-cluster dependence Within-g info not used to prove convergence • But see C. Hansen, J. Econometrics 2007 > As. properties depend on (1/G)*middle matrix

$$\hat{V}_{CR}[\hat{\boldsymbol{\beta}}] = (\mathbf{X}'\mathbf{X})^{-1} \left(\sum_{g=1}^{G} \mathbf{X}_{g} \tilde{\mathbf{u}}_{g} \tilde{\mathbf{u}}_{g}' \mathbf{X}_{g}' \right) (\mathbf{X}'\mathbf{X})^{-1}.$$
(3)

A BS Solution to Small-G

Cameron, Gelbach & Miller (2008, ReStat)

- Treat clusters like individual observations
- Re-sample whole clusters at a time (BDM did this)
- But: use BS-t to take advantage of convergence rate
- Simulations in CGM show BS-t does very well
 - > Useful to impose null hypothesis via "wild bootstrap"
 - Difficult to do in nonlinear models (e.g., probit)
 - But Pat Kline & Andres Santos show alternative

Some Results From CGM

TABLE 3.—1,000 SIMULATIONS FROM DGP WITH GROUP-LEVEL RANDOM ERRORS AND HETEROSKEDASTICITY (Rejection rates for tests of nominal size 0.05 with simulation standard errors in parentheses)

Estimator			Number of Groups (G)					
#	Method	5	10	15	20	25	30	
1	Assume i.i.d.	0.302 (0.015)	0.288 (0.014)	0.307 (0.015)	0.295 (0.014)	0.287 (0.014)	0.297 (0.014)	
3	Cluster-robust	0.208 (0.013)	0.118 (0.010)	0.110 (0.010)	0.081 (0.009)	0.072 (0.008)	0.068 (0.008)	
5	Pairs cluster bootstrap-se	0.174 (0.012)	0.111 (0.010)	0.109 (0.010)	0.085 (0.009)	0.074 (0.008)	0.070 (0.008)	
10	Pairs cluster bootstrap-t	0.079 (0.009)	0.067 (0.008)	0.074 (0.008)	0.058 (0.007)	0.054 (0.007)	0.053 (0.007)	
13	Wild cluster bootstrap-t	0.053 (0.007)	0.056 (0.007)	0.058 (0.007)	0.048 (0.007)	0.041 (0.006)	0.044 (0.006)	

Focusing On Smaller G

Estimator				Number of	Groups (G)
#	Method	5	10	15	20
- T.	Assume i.i.d.	0.302 (0.015)	0.288 (0.014)	0.307 (0.015)	0.295 (0.014)
3	Cluster-robust	0.208 (0.013)	0.118 (0.010)	0.110 (0.010)	0.081 (0.009)
5	Pairs cluster bootstrap-se	0.174 (0.012)	0.111 (0.010)	0.109 (0.010)	0.085 (0.009)
10	Pairs cluster bootstrap-t	0.079 (0.009)	0.067 (0.008)	0.074 (0.008)	0.058 (0.007)
13	Wild cluster bootstrap-t	0.053 (0.007)	0.056 (0.007)	0.058 (0.007)	0.048 (0.007)

Re-examining a BDM Design-1

Notation wrinkles:

- > g denotes cluster
- i denotes <u>year</u>
- > n denotes individual

$y_{nig} = \alpha_g + \gamma_i + \mathbf{x}'_{nig} \mathbf{\delta} + \beta_1 I_{ig} + u_{nig},$

Re-examining a BDM Design-2

TABLE 6.—250 SIMULATIONS FROM BDM (2004) DESIGN USING MICRODATA (Rejection rates for tests of nominal size 0.05 with simulation standard errors in parentheses)

		Number of States (G)		
Esti mator #	Method	6 Size	10 Size	
1	CRVE cluster on state-year	0.440	0.444	
3	CRVE cluster on state	0.148 (0.023)	0.100	
11	Wild bootstrap-t cluster on state	0.080 (0.017)	0.048 (0.014)	

Note: Micro regressions control for a quartic in age, three education dummies, and state and year fixed effects. Number of Monte Carlo replications R = 250. Number of bootstrap replications B = 199.

Resampling Methods

There are different types of bootstraps

- > Resampling: parametric or nonparametric?
 - Nonparametric: "pairs" resampling
 - Parametric
 - A priori known distribution
 - Based partly on empirical distribution
 - For example, draw from fitted residuals
- Is resampling iid or cluster-based?
- Is the null hypothesis imposed?

Whether H₀ is Imposed

Helpful for power
Also related to size based on Monte Carlos
Impossible with pairs resampling
Possible with parametric forms
Fully parametric bootstrap
Residual bootstrap
Wild bootstrap

How the Wild BS Works Recall

First estimate (say, via OLS), to get

- > βhat
- > Uhat = { $uhat_g$ }, g=1,2,...G.

Then re-sample G times from Uhat & create y_{g,b} = X_gβhat + uhat_{g,b}
 Then re-run OLS of y_{g,b} on X_g to get βhat_b
 Then do inference using {θhat_b}

 $y_a = X_a \beta + U_a$

When Bad Things Happen to Good Re-samples

The bootstrap can fail: Boundary problems X ~ U(a,b) Non-smooth problems But note that quantiles/greg OK Mass points Nearest-neighbor matching

Other Methods of Inference

BS isn't only "non-standard" approach Randomization inference Requires known null hypothesis Sub-sampling Re-sample <u>without</u> replacement Use sample sizes m<n; have to choose m Asymptotic theory Student's t with df correction